Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Selvanayagam, ${ }^{\text {a }}$
 D. Velmurugan, ${ }^{\text {a }}$
 K. Ravikumar, ${ }^{\text {b }}$
 J. Jayashankaran, ${ }^{\text {c }}$
 R. Rathna Durga ${ }^{c}$ and
 R. Raghunathan ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and
${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.044$
$w R$ factor $=0.134$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]Printed in Great Britain - all rights reserved

1'-Methyl-2"-phenylcyclohexane-1-spiro-4'-[acenaphthene-1-spiro-2'-pyrrolidine-3^{\prime}-spiro-4" $\mathbf{4}^{\prime \prime} H$)-[1,3]oxazole]-2,5"-dione

In the title compound, $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$, the pyrrolidine ring adopts an envelope conformation and the cyclohexane ring adopts a chair conformation. The structure is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ interactions.

Comment

The pyrrolidine skeleton occurs in many families of biologically important compounds. The resulting functionality, due to ease of substitution and, therefore, modification at several positions (Baldwin et al., 1994a,b), has been utilized to synthesize compounds with varying properties. Such derivatives are found to have antimicrobial and antifungal activity against various pathogens, except Bacillus subtilis (Amal Raj et al., 2003). An acenaphthene derivative was found to have high κ-opioid receptor affinity and selectivity (Halfpenny et al., 1991). These derivatives are used as new conformationally restricted ligands for melatonin receptors (Jellimann et al., 2000), liver regeneration (Gershbein, 1975) and antitumoral agents (Boido et al., 1994).

(I)

The $\mathrm{C}-\mathrm{C}$ bond lengths in the pyrrolidine moiety are somewhat longer and the $\mathrm{C}-\mathrm{N}$ bond lengths are somewhat shorter than normal values (Table 1). A similar effect has been observed in related reported structures (Abdul Ajees et al., 2002; Usha et al., 2003. The geometry of the acenaphthene moiety compares well with that reported in other compounds, for example, by Edwards et al. (1980) and Govind et al. (2004). The $\mathrm{C}-\mathrm{C}$ bond lengths in the phenyl and cyclohexane rings are comparable to the reported mean values of 1.384 (13) and 1.535 (16) Å, respectively (Allen et al., 1987).

The sum of the angles (337.2°) at atom N1 is in accordance with $s p^{3}$ hybridization. The torsion angle N19-C20-C24C29 of 4.5 (2) ${ }^{\circ}$ indicates that the conformation of the attachment of the phenyl ring with respect to the oxazolone ring is + syn-periplanar; the dihedral angle between these two rings is $5.8(1)^{\circ}$. The acenaphthene moiety is planar, with a maximum deviation of 0.109 (2) \AA for atom C7; the attached atom O18 deviates by 0.386 (1) \AA from this plane.

Received 18 October 2004 Accepted 27 October 2004 Online 6 November 2004

Figure 1
The molecular structure and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The molecular packing of (I), viewed approximately down the a axis. Dashed lines indicate intramolecular hydrogen bonds and $\pi-\pi$ interactions.

The pyrrolidine ring adopts an envelope conformation with puckering parameters $q_{2}=0.382(1) \AA$ and $\varphi=7.5(2)^{\circ}$ (Cremer \& Pople, 1975). Atom N1 deviates by 0.562 (1) \AA from the least-squares plane through the remaining four atoms C2-C5 of the ring. The cyclohexane ring adopts a chair conformation, confirmed by the puckering parameters $q_{2}=$ $0.032(2) \AA, q_{3}=-0.555(2) \AA, Q_{T}=0.556(2) \AA$ and $\theta=$ 176.8 (2) ${ }^{\circ}$. Atoms C4, C30, C32 and C33 lie in a plane, whereas C31 and C34 deviate by -0.668 (2) and 0.624 (2) \AA from the plane.

In addition to van der Waals interactions, the structure is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2), also by $\pi-\pi$ interactions between the oxazolone ring (C3/N19/C20/O21/C22) and the fivemembered ring of the acenaphthene moiety $(\mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 13 /$ C17), with a centroid-centroid separation of 3.048 (1) \AA (Fig. 2).

Experimental

To a refluxing solution of 2-cyclohexylideneoxazol-1-one (1 mmol) in methanol was added sarcosine (1 mmol) and acenapthenequinone $(1 \mathrm{mmol})$; the mixture was refluxed for 2 h . The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography to afford the title trispiro compound; this had not been reported earlier in the literature, using 1,3-dipolar cycloaddition methodology in a one-pot synthesis. The compound was recrystallized from a methanol solution, yielding crystals of good diffraction quality.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=450.52$
Triclinic, $P \overline{1}$
$a=9.8626$ (8) A
$b=10.4697$ (9) A
$c=12.5629$ (11) \AA
$\alpha=114.049$ (1) ${ }^{\circ}$
$\beta=103.946$ (1) ${ }^{\circ}$
$\gamma=92.633(2)^{\circ}$
$V=1134.39(17) \AA^{3}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans

$$
R_{\mathrm{int}}=0.013
$$

$$
\theta_{\max }=28.0^{\circ}
$$

Absorption correction: none

$$
h=-11 \rightarrow 12
$$

6911 measured reflections

$$
k=-11 \rightarrow 13
$$

4539 independent reflections

$$
l=-16 \rightarrow 16
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.134$
$S=1.00$
4539 reflections
307 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.319 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0865 P)^{2} \\
&+0.1476 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2364
reflections
$\theta=2.5-22.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

3881 reflections with $I>2 \sigma(I)$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 5$	$1.449(2)$	$\mathrm{C} 4-\mathrm{C} 30$	$1.517(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.451(2)$	$\mathrm{C} 4-\mathrm{C} 34$	$1.539(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.456(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.544(2)$
$\mathrm{C} 2-\mathrm{C} 17$	$1.517(2)$	$\mathrm{C} 7-\mathrm{O} 18$	$1.206(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.574(2)$	$\mathrm{N} 19-\mathrm{C} 20$	$1.265(2)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.586(2)$	$\mathrm{C} 20-\mathrm{O} 21$	$1.386(2)$
$\mathrm{C} 3-\mathrm{N} 19$	$1.462(2)$	$\mathrm{O} 21-\mathrm{C} 22$	$1.389(2)$
$\mathrm{C} 3-\mathrm{C} 22$	$1.531(2)$	$\mathrm{C} 22-\mathrm{O} 23$	$1.185(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.595(2)$		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$107.5(1)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$115.1(1)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6$	$114.6(1)$		
$\mathrm{N} 19-\mathrm{C} 20-\mathrm{C} 24-\mathrm{C} 29$	$4.5(2)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5A \cdots O18	0.97	2.54	$3.067(2)$	114
C16-H16 \cdots O23	0.93	2.57	$3.029(2)$	111
C25-H25 O21	0.93	2.45	$2.781(2)$	101
C34-H34B \cdots O23	0.97	2.49	$2.944(2)$	109

The H atoms were positioned geometrically and treated as riding on their parent C atoms, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and other $\mathrm{Csp} p^{3}-\mathrm{H}=0.97 \AA ; U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV thanks the Department of Biotechnology (DBT) and the University Grants Commission (UGC) for providing support under major research projects.

References

Abdul Ajees, A., Manikandan, S. \& Raghunathan, R. (2002). Acta Cryst. E58, o802-o804.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. \& Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.
Baldwin, J. E., Mackenzie Turner, S. C. \& Moloney, M. G. (1994a). Tetrahedron, pp. 9411-9424.
Baldwin, J. E., Mackenzie Turner, S. C. \& Moloney, M. G. (1994b). Tetrahedron, pp. 9425-9438.
Boido, A., Vazzana, I. \& Sparatore, F. (1994). Farmaco, 49, 97-104.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Edwards, J. M., Mangion, M., Anderson, J. B., Rapposch, M., Moews, P. \& Hite, G. (1980). Acta Cryst. B36, 1241-1244.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gershbein, L. L. (1975). Res. Commun. Chem. Pathol. Pharmacol. 11, 445-466.
Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. \& Raghunathan, R. (2004). Acta Cryst. E60, o547-o549.
Halfpenny, P. R., Horwell, D. C., Hughes, J., Humblet, C., Hunter, J. C., Neuhaus, D. \& Rees, D. C. (1991). J. Med. Chem. 34, 190-194.
Jellimann, C., Mathe-Allainmat, M., Andrieux, J., Kloubert, S., Boutin, J. A., Nicolas, J. P., Bennejean, C., Delagrange, P. \& Langlois, M. (2000). J. Med. Chem. 43, 4051-4062.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2003). Acta Cryst. E59, o1572-o1574.

[^0]: (C) 2004 International Union of Crystallography

