organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Selvanayagam,^a D. Velmurugan,^a* K. Ravikumar,^b J. Jayashankaran,^c R. Rathna Durga^c and R. Raghunathan^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.044 wR factor = 0.134 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

1'-Methyl-2"-phenylcyclohexane-1-spiro-4'-[acenaphthene-1-spiro-2'-pyrrolidine-3'-spiro-4"(5"*H*)-[1,3]oxazole]-2,5"-dione

In the title compound, $C_{29}H_{26}N_2O_3$, the pyrrolidine ring adopts an envelope conformation and the cyclohexane ring adopts a chair conformation. The structure is stabilized by intramolecular $C-H\cdots O$ and $\pi-\pi$ interactions.

Received 18 October 2004 Accepted 27 October 2004 Online 6 November 2004

Comment

The pyrrolidine skeleton occurs in many families of biologically important compounds. The resulting functionality, due to ease of substitution and, therefore, modification at several positions (Baldwin *et al.*, 1994*a*,*b*), has been utilized to synthesize compounds with varying properties. Such derivatives are found to have antimicrobial and antifungal activity against various pathogens, except *Bacillus subtilis* (Amal Raj *et al.*, 2003). An acenaphthene derivative was found to have high κ -opioid receptor affinity and selectivity (Halfpenny *et al.*, 1991). These derivatives are used as new conformationally restricted ligands for melatonin receptors (Jellimann *et al.*, 2000), liver regeneration (Gershbein, 1975) and antitumoral agents (Boido *et al.*, 1994).

The C-C bond lengths in the pyrrolidine moiety are somewhat longer and the C-N bond lengths are somewhat shorter than normal values (Table 1). A similar effect has been observed in related reported structures (Abdul Ajees *et al.*, 2002; Usha *et al.*, 2003. The geometry of the acenaphthene moiety compares well with that reported in other compounds, for example, by Edwards *et al.* (1980) and Govind *et al.* (2004). The C-C bond lengths in the phenyl and cyclohexane rings are comparable to the reported mean values of 1.384 (13) and 1.535 (16) Å, respectively (Allen *et al.*, 1987).

The sum of the angles (337.2°) at atom N1 is in accordance with sp^3 hybridization. The torsion angle N19-C20-C24-C29 of 4.5 (2)° indicates that the conformation of the attachment of the phenyl ring with respect to the oxazolone ring is +*syn*-periplanar; the dihedral angle between these two rings is 5.8 (1)°. The acenaphthene moiety is planar, with a maximum deviation of 0.109 (2) Å for atom C7; the attached atom O18 deviates by 0.386 (1) Å from this plane.

Figure 1

The molecular structure and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

The molecular packing of (I), viewed approximately down the a axis. Dashed lines indicate intramolecular hydrogen bonds and π - π interactions.

The pyrrolidine ring adopts an envelope conformation with puckering parameters $q_2 = 0.382 (1) \text{ Å}$ and $\varphi = 7.5 (2)^{\circ}$ (Cremer & Pople, 1975). Atom N1 deviates by 0.562 (1) Å from the least-squares plane through the remaining four atoms C2-C5 of the ring. The cyclohexane ring adopts a chair conformation, confirmed by the puckering parameters q_2 = 0.032 (2) Å, $q_3 = -0.555$ (2) Å, $Q_T = 0.556$ (2) Å and $\theta =$ 176.8 (2)°. Atoms C4, C30, C32 and C33 lie in a plane, whereas C31 and C34 deviate by -0.668 (2) and 0.624 (2) Å from the plane.

In addition to van der Waals interactions, the structure is stabilized by intramolecular C-H···O hydrogen bonds (Table 2 and Fig. 2), also by $\pi - \pi$ interactions between the oxazolone ring (C3/N19/C20/O21/C22) and the fivemembered ring of the acenaphthene moiety (C2/C7/C8/C13/ C17), with a centroid-centroid separation of 3.048 (1) Å (Fig. 2).

Experimental

To a refluxing solution of 2-cyclohexylideneoxazol-1-one (1 mmol) in methanol was added sarcosine (1 mmol) and acenapthenequinone (1 mmol); the mixture was refluxed for 2 h. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography to afford the title trispiro compound; this had not been reported earlier in the literature, using 1,3-dipolar cycloaddition methodology in a one-pot synthesis. The compound was recrystallized from a methanol solution, yielding crystals of good diffraction quality.

Curvetal	data
Crystat	aaaa

$C_{29}H_{26}N_2O_3$	Z = 2
$M_r = 450.52$	$D_x = 1.319 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.8626 (8) Å	Cell parameters from 2364
b = 10.4697 (9) Å	reflections
c = 12.5629 (11) Å	$\theta = 2.5 - 22.9^{\circ}$
$\alpha = 114.049 \ (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 103.946 \ (1)^{\circ}$	T = 293 (2) K
$\gamma = 92.633 \ (2)^{\circ}$	Block, colourless
$V = 1134.39 (17) \text{ Å}^3$	$0.24 \times 0.22 \times 0.20 \text{ mm}$

3881 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.013$ $\theta_{\rm max} = 28.0^\circ$

 $h = -11 \rightarrow 12$

 $k = -11 \rightarrow 13$ $l = -16 \rightarrow 16$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: none 6911 measured reflections 4539 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0865P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.1476P]
$wR(F^2) = 0.134$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
4539 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
307 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

N1-C5	1.449 (2)	C4-C30	1.517 (2)
N1-C2	1.451 (2)	C4-C34	1.539 (2)
N1-C6	1.456 (2)	C4-C5	1.544 (2)
C2-C17	1.517 (2)	C7-O18	1.206 (2)
C2-C3	1.574 (2)	N19-C20	1.265 (2)
C2-C7	1.586 (2)	C20-O21	1.386 (2)
C3-N19	1.462 (2)	O21-C22	1.389 (2)
C3-C22	1.531 (2)	C22-O23	1.185 (2)
C3-C4	1.595 (2)		
C5-N1-C2	107.5 (1)	C2-N1-C6	115.1 (1)
C5-N1-C6	114.6 (1)		
N19-C20-C24-C29	4.5 (2)		

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C5-H5A···O18	0.97	2.54	3.067 (2)	114
C16-H16···O23	0.93	2.57	3.029 (2)	111
C25-H25···O21	0.93	2.45	2.781 (2)	101
C34−H34 <i>B</i> ···O23	0.97	2.49	2.944 (2)	109

The H atoms were positioned geometrically and treated as riding on their parent C atoms, with aromatic C-H = 0.93 Å, methyl C-H = 0.96 Å and other Csp^3 -H = 0.97 Å; U_{iso} (H) = 1.5 U_{eq} (C) for methyl H and 1.2 U_{eq} (C) for other H atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PARST* (Nardelli, 1995).

SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV thanks the Department of Biotechnology (DBT) and the University Grants Commission (UGC) for providing support under major research projects.

References

- Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, 0802–0804.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.
- Baldwin, J. E., Mackenzie Turner, S. C. & Moloney, M. G. (1994a). *Tetrahedron*, pp. 9411–9424.
- Baldwin, J. E., Mackenzie Turner, S. C. & Moloney, M. G. (1994b). *Tetrahedron*, pp. 9425–9438.
- Boido, A., Vazzana, I. & Sparatore, F. (1994). Farmaco, 49, 97-104.
- Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Edwards, J. M., Mangion, M., Anderson, J. B., Rapposch, M., Moews, P. & Hite, G. (1980). *Acta Cryst.* B36, 1241–1244.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gershbein, L. L. (1975). *Res. Commun. Chem. Pathol. Pharmacol.* **11**, 445–466. Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K.,
- Sureshbabu, A. R. & Raghunathan, R. (2004). Acta Cryst. E60, 0547–0549. Halfpenny, P. R., Horwell, D. C., Hughes, J., Humblet, C., Hunter, J. C.,
- Neuhaus, D. & Rees, D. C. (1991). J. Med. Chem. **34**, 190–194.
- Jellimann, C., Mathe-Allainmat, M., Andrieux, J., Kloubert, S., Boutin, J. A., Nicolas, J. P., Bennejean, C., Delagrange, P. & Langlois, M. (2000). J. Med. Chem. 43, 4051–4062.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, 01572–01574.